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I.   SUMMARY 

Our most significant discoveries made during the last three years in the different areas of 

optical physics are summarized below. These items are described in more detail in the body of the 

final report. 

(a) Effects of Network Touologv on Low-Temperature Relaxation in Ge-As-Se TR Transmitting 

Glasses: The discovery of persistent spectral hole burning in the infrared vibrational modes of 

simple molecular impurities in the chalcogenide glasses, the first instances of non-electronic 

persistent hole burning in covalently bonded glasses, makes available a powerful spectroscopic 

technique for the investigation of glassy dynamics in a particularly rich and versatile class of 

materials. Persistent hole burning has been observed for a diverse set of host-impurity combinations 

— including SH, D20, OD, and C02 in As2S3; C02 in glassy Se; and SeH in Se, As2Se3, and Ge- 

As-Se glasses — suggesting that vibrational hole burning is universal in the chalcogenide glasses. 

This new class of hole burning systems displays a wealth of intriguing behavior, including hole 

width temperature dependences ranging from T1-3 for a-Se to T2 for As2S3, and the erasure of holes 

by extremely small doses of band-gap light. Despite the disparate nature of the impurity centers, as 

underscored by the wide range of hole widths at 1.5 K (from 80 MHz for C02 in As2S3 and Se, to 

over 20 GHz for holes on the low frequency extreme of the SH stretch band in As2S3), different 

impurities in a given host display remarkably similar 1.5K spectral hole relaxation behaviors, lending 

credence to the idea that hole burning proceeds via configurational changes in the glassy matrix. 

Large variations in the hole relaxation behavior do occur, however, when a single type of impurity is 

placed in different hosts. To investigate a possible structural origin for this variation, the 1.5K 

relaxation of spectral holes burned in the 4.5um SeH absorption band is studied as a function of 

network connectivity for a number of glass compositions in the Ge-As-Se system, with the striking 

result that the dominant rate characterizing the non-exponential relaxation increases monotonically by 

over three orders of magnitude as the average atomic coordination number of the host is increased 

from 2.0 to 2.8. Over the composition range studied the quantitative form of the non-exponential 

hole relaxation depends solely on the average coordination number, independent of chemical 

composition. By making a systematic study of the resulting vibrational hole shape across the Ge-As- 

Se glass series we have shown that the dephasing time is a function of the average coordination 

number or mean bond number of the glass and is independent of the chemical composition. 

This is the first time that structural topology has been connected with the dephasing dynamics. 



(b) Vibrational relaxation of diatomic molecules in alkali halide crystals: By measuring the 

vibrational lifetime of CN_ in silver halides we were able to demonstrate conclusively that for simple 

crystals the vibrational lifetime of this molecule obeys an energy gap law; the farther the important 

lattice vibrations are from the stretch mode frequency the longer the vibrational lifetime. A 

systematic study of the vibrational lifetime of diatomic hydride molecules in simple crystals shows 

that they do not obey such an energy gap law. The reason for this dichotomy remains a mystery. 

(c) Vibrational relaxation of diatomic molecules in glass: Our IR pump-probe examination of SH in 

As2S3 glass has show that this impurity molecule is actually weakly hydrogen bonded in the glassy 

structure. The stronger the hydrogen bonding at a site the lower the vibrational frequency and the 

shorter the molecules lifetime. The lifetimes determined by this direct (fast) measurement are the 

same as those previously inferred from the (slow) persistent hole burning technique demonstrating 

for the first time that both techniques can be used equally well to measure lifetimes. 

(d) Pocket Vibrational Modes in Crystals: A systematic study of the vibrational energy levels 

induced by a point defect in a crystal lattice has demonstrated that there are localized modes with the 

maximum mode amplitude at sites far removed from the defect itself. In the past it has always been 

assumed that defect modes would be localized at the impurity site. The discovery of such pocket 

modes may help to explain the high mobility of the Ag+ ion in some crystal lattices. 

(e) Intrinsic Localized Vibrational Modes in Perfect Crystals: Our numerical investigation of 

nonlinear 1-D lattices has continued to support the hypothesis that intrinsic localized vibrational 

modes are a natural feature of perfect anharmonic lattices. The inclusion of both cubic and quartic 

terms in the potential has produced not only localized vibrational modes but also a localized dc 

expansion at the mode site. When the localized mode moves through the lattice it is accompanied by 

this localized dc expansion giving the excitation an effective translational mass. 

(f) Uncovering Extinction Sum Rules for Particles of Arbitrary Size: Our investigation of the far 

infrared properties of simple dielectric composite structures such as hot pressed ZnS+diamond 

particles has produced a number of new ideas for the analysis of the optical properties of such 

complex structures. Most interesting is that we have uncovered a general extinction sum rule which 

is independent of the size of the particle in relation to the wavelength and independent of the 

composite nature of the particle. 



(g) Measurement of the longitudinal asymmetry of a charged particle bunch from the coherent 

synchrotron or transition radiation mm-wave spectrum: The coherent far infrared radiation induced 

from relativistic electron bunches of millimeter and submillimeter length provides a new way to 

characterize the electron bunch shape. Once the spectrum associated with the bunch form factor is 

measured a Kramers-Kronig relation is applied to the spectral form factor to find the minimal phase 

and then the bunch shape is determined from the complete Fourier transform. Our successful 

demonstration of this idea has given us access to high peak intensity, psec pulses of mm-wave 

radiation from the Cornell linac. 



II.      PROGRESS 

A.       Effects of Network Topology on Low-Temperature Relaxation in Ge-As-Se 

IR Transmitting Glasses 

1.        Persistent spectral hole filling 

Our discovery of persistent infrared spectral hole (PIRSH) burning in sulfur-hydrogen 

vibrational mode in the infrared transmitting glass As2S3 [1] represented the first instance of non- 

electronic spectral hole burning a covalently bonded glass. As more impurity centers were 

successfully prepared in chalcogenide glasses, it became clear that the As2S3:SH system was not an 

anomaly, but rather was the first example of a whole new class of hole burning systems. 

In monitoring the time evolution of the spectral hole after burning ceases, one is in effect 

monitoring the relaxation among the glassy configurations involved in the hole burning. 

Experiments of this type have been performed by many workers on a variety of amorphous systems, 

both organic and inorganic [2-4]. The one qualitative feature universal to all these systems is the 

highly non-exponential nature of the hole relaxation, indicating the existence of a broad distribution 

of relaxation rates for each system. Quantitatively, however, these distributions of relaxation rates 

vary widely from system to system, with the most probable relaxation rate varying by several orders 

of magnitude. Until now, the diverse nature of the systems studied has made meaningful 

correlations between glass structure and hole relaxation behavior impossible. 

This situation changed with the discovery that persistent infrared spectral holes burned in the 

SeH vibrational absorption band display radically different relaxation behavior in glassy Se and 

As2Se3. That two glasses which seem to be quite similar in other respects should exhibit spectral 

holes for which the dominant relaxation rates differ by nearly three orders of magnitude is quite 

surprising. The obvious difference between these two glasses is that Se glass consists of weakly 

interacting chains of two-fold coordinated Se atoms, while in As2Se3 these chains are cross-linked 

by three-fold coordinated As atoms. This result suggested a relation between the microscopic 

topology of the glass network and hole relaxation behavior, but chemical effects due to the presence 

or absence of As could not be ruled out. The importance of this result, however, is that both glasses 

are members of a large class of glass-forming alloys which allow continuous variation of structure 

by varying alloy composition, opening the way for a systematic study of the effects of network 

topology on spectral hole behavior. 

The ternary Ge-As-Se system is particularly well-suited to exploring the role of topology in 

determining relaxation behavior because its large glass-forming region makes it possible for a given 

value of the average coordination number <r>, a key parameter for describing network connectivity, 

to be realized with a continuous range of chemical compositions, allowing purely topological effects 

to be distinguished from chemical effects. The basic way in which the microscopic network 
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structure of a chalcogenide glass is determined by its composition is illustrated schematically in Fig. 

1 for the specific case of Ge-As-Se glasses. It is energetically favorable for a chalcogen atom such 

as Se to have two covalent bonds per atom, a condition in which it is said to be two-fold 

coordinated. Elemental Se glass is thus made up of chains of Se atoms as in Fig. 1 (a), each Se 

within a chain covalently bonded to two others, and weak Van der Waals interactions providing the 

only coupling between chains. The result is a loose, non-rigid structure. This structure can be 

modified by replacing some of the Se atoms with As or Ge atoms, which prefer to be three-fold and 

four-fold coordinated, respectively. The result of adding these higher coordination atoms, as shown 

in Fig. 1 (b), is to cross-link the Se chains, adding rigidity to the structure. In this picture, then, the 

larger the Ge or As fraction is. the more rigid the structure, leading to such 

Figure 1. Schematic representations of the structure of elemental Se and Ge-As-Se glasses, (a) Elemental Se glass. 
The two-fold coordinated Se atoms form chains with strong covalent bonds between the Se atoms within a given chain 
and only weak interactions between chains, producing a low rigidity structure, (b) Ge-As-Se glass. Replacing two- 
fold coordinated Se atoms with three-fold coordinated As or four-fold coordinated Ge has the effect of cross-unking the 
Se chains, adding rigidity to the network structure. 



observable differences as larger elastic constants and higher glass transition temperatures. The 

question now is how to express this picture in a quantitative fashion. 

The role of microscopic topology in determining the properties of glass-forming compounds 

has been explored theoretically for several years. Phillips[5,6], in constraint counting arguments 

attempting to explain the strong glass-forming tendency of certain alloy compositions, first suggested 

that the network connectivity could be parameterized by simply using an average atomic coordination 

number, <r>, where r is the coordination number of each atom in the glass, i.e. the number of 

neighboring atoms covalently bonded to that atom. The idea is then to replace the real network 

structure, consisting of a variety of atoms of different coordination numbers, with a network of 

identical virtual atoms, all having the coordination number <r>. The distinguishing feature of this 

approach, as opposed to ball-and-stick type mechanical models, is that it permits non-integral 

coordination numbers, and recognizes the topological relevance of such a concept. 

These ideas were futher refined by Thorpe et al.[7-9] and Tanaka.[10] who argued that as 

<r> is increased, rigid regions form in the "floppy" structure of pure Se glass, growing in size and 

number until at some critical value of <r> the rigid regions become connected throughout the 

network; i.e., a "rigidity percolation" transition occurs from an underconstrained "floppy" structure 

to an overconstrained rigid structure. This rigidity percolation, it is argued, should occur when the 

number of floppy modes goes to zero which for the above system occurs at rp = 2.4 . 

The key parameter in relating the properties of the glass-like solids to their microscopic 

topology rather than to their chemical nature is the mean coordination number <r>, i. e. the average 

number of covalent bonds per atom. Because the chalcogenides are such good glass formers over a 

wide range of alloy composition[11], they offer a promising system for testing these ideas. In the 

GeAsSe compounds, each Ge atom has four, each As atom three and each Se atom has two covalent 

bonds, thus the mean coordination number <r> for a GeAsSe alloy is simply calculated from the 

concentration of the three constituents according to 

<r>=4-[Ge] + 3[As] + 2[Se]. (1) 

By studying hole filling as a function of time for a single molecular impurity in the Ge-As-Se 

glass series we have found that large variations in the hole relaxation behavior do occur. To 

investigate a possible structural origin for this variation, the 1.5K relaxation of spectral holes burned 

in the 4.5(im SeH absorption band has been studied as a function of network connectivity for ten 

glass compositions in the Ge-As-Se system, with the striking result that the dominant rate 

characterizing the non-exponential relaxation increases monotonically by over three orders of 

magnitude as the average atomic coordination number of the host is increased from 2.0 to 2.8. 

Therse results are shown in Fig. 2. 
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Figure 2. Spectral hole refilling at 1.5 K for the SeH absorption in Ge-As-Se glasses. Data points show the hole 
depth, normalized to unity at t=0, as a function of time t after burning ceases for ten different compositions burned and 
probed under identical conditions. The laser frequency is 2227 cm-1 and the intensity at the sample is roughly 200 
mW/cm2. The initial hole in each sample is burned for 2 minutes. The average atomic coordination numbers < r > 
and compositions of the ten samples, listed in order of decreasing relaxation time, are as follows: < r > = 2.0 — 
glassy Se (open squares); < r > = 2.2 — As0 2Se0 8 (solid triangles), Geo.089As0.022Se0.889 (solid circles): < r > 

= 2.4 — Geo 15Aso.10Seo.75 00. As2Se3 (open circles), Geo.iAsQ^Seoj (open trianlges), 
Geo i33Aso.133Seo.733 (+); < r > = 2.6 — Geo.iAs0.4Se0.5 (open diamonds), Ge0.2As0.2Se0.6 (open stars); < r 

> = 2.8 — Geo 3AS0 2Se0 5 (solid squares>- Solid llnes are fits' for each set of compositions having a given value of 
< r >, to a Gaussian distribution of tunneling parameters. 

The remarkable result of these experiments is that the hole relaxation behavior in these glasses 

appears to be determined solely by network connectivity considerations, independent of chemical 

composition. 
2.        Dephasing properties of molecules in chalcogenide glass 

Because of the advance of laser spectroscopic techniques such as fluorescence line 

narrowing, persistent spectral hole burning and the photon echo, the temperature dependence of 

homogeneous optical line widths of atoms and molecules in glasses has been the subject of many 

experimental investigations in recent yearsfl,12-19]. The dephasing rate of a defect in a glass at low 

temperature is orders of magnitude larger compared to its counterpart in a crystal and the temperature 



dependence of the homogeneous linewidth is significantly different in crystals and glasses. The 

dephasing rate in crystals is fairly well understood: a Raman process with phonons gives rise to a T7 

-dependence at low temperatures if the phonon modes are not strongly perturbed by the defect while 

if they are perturbed an exponential law results due to interaction of the optical center with local 

modes. Above the Debye temperature a quadratic temperature dependence due to interaction with 

phonons in a Raman process is found. For the dephasing rate in glasses the homogeneous line 

width is characterized by a power law[20-22]. The experimental temperature dependence for both 

organic and inorganic glasses is given by[15-17] 
rhom(T) = rhom(T = 0) + a-Th (2) 

with the exponent b somewhere between 1 and 2.3 down to the lowest temperatures[3,13,15- 

17,23]. 
Glasses seem to fall roughly into two categories. Organic systems show an approximately 

linear temperature dependence of the homogeneous linewidth with an exponent b near 1.3 while 

inorganic materials are typically characterized by a quadratic power law although variations in b from 

1.3 to 2.3 are found. To date the temperature exponents measured with fast and slow methods are 

basically the same even though the measured widths themselves may be different[3,18,23]. 

Although there is a consensus that the two level systems of glasses[24,25] are important, the detailed 

dynamical picture is unclear. Most dephasing theories[ 13,26] explain the larger homogeneous 

widths and their anomalous temperature dependence in terms of the interaction of the impurities with 

a broad distribution of two-level systems. If the nature of the interaction of the two-level systems 

with the optical center is assumed to be dipolar then, according to some theories[13,26,27], the 

temperature exponent of the homogeneous linewidth is 1+|X, where u. is the exponent that 

characterizes the density of two level systems which is <* B1 as a function of their energy splitting E. 

It is found in thermal experiments[28] that \i = 0.3, so that the temperature exponent of the 

homogeneous linewidth comes out to be 1.3 in accordance with many of the experimental findings in 

organic glasses. Other theories, which invoke "fractons" [29] or "tunnelons"[30] have also been 

proposed to explain dephasing processes in glasses. To explain the findings in inorganic glasses, 

Huber[31,32] has proposed a two phonon Raman process as the dephasing mechanism with an 

effective Debye temperature which is 2 to 10 times lower in glasses than their nominal value in 

crystals. The density of low lying vibrational modes has been measured by neutron scattering in 

vitreous silica and found to be larger than the Debye value[33]. This leads to an extention of the 

quadratic temperature dependence to lower temperatures but there are data at temperatures much 

below this effective Debye temperature which do not show a transition to the expected T7 

dependence[32,34,35]. 



In ail of the fluorescence line narrowing, persistent spectral hole burning and photon echo 

studies of organic and inorganic glass, it is still not clear how much of the underlying behavior is 

controlled by chemical bonding and how much by local glass structure because little work has been 

carried out on systems in which the chemistry can be varied in a systematic manner. As mentioned 

above for the chalcogenide glass the constraint counting arguments[5-10] lead to topological 

thresholds at <r> = 2.4 and <r> = 2.67. Both have been observed in different glasses as extrema or 

kinks in physical properties as a function of the mean coordination number, such as the glass 

forming temperature, the mean atomic volume, the dielectric constant, the thermal diffusivity or the 

fragility[36-39]. We have found a supporting correspondence in the time dependent systematics of 

the hole filling properties [4] as described above. 

Until our work below there existed no systematic study of a possible connection between the 

glass structure and the temperature dependence of optical line widths because the chalcogenide 

glasses are opaque in the visible where most of the temperature dependent line width investigations 

have been performed[12-17]. Persistent IR spectral hole burning in the electronic ground state first 

observed for SH in As2S3 glass[40] was quickly generalized to other molecules in chalcogenide 

glasses[l] since all the GeAsSe glasses are transparent in the infrared region of the spectrum. Here 

we describe our measurements of the temperature dependence of the hole width and show that they 

follow a power law in temperature for all samples. Our general result is that the temperature 

exponent in Eq. (2) increases with increasing mean coordination number <r> of the glass indicating 

that structural topology also plays a role in the temperature dependence of the dephasing time. 

A schematic optical layout for the hole burning experiment is shown in Fig. 3. The radiation 

source is a lead-salt diode laser mounted on the cold finger of a closed cycle refrigerator. Rough 

frequency tuning is achieved by changing the operation temperature of the diode whereas the fine 

tuning is done by controlling the laser current. For the experiments described here the laser is 

operated at a center frequency of 2230 cm"1 (4.48 urn), which is coincident with the high frequency 

wing of the inhomogeneous SeH-line of all samples and allows us to perform the hole burning 

using the same laser mode. The high frequency side of the absorption band is chosen because the 

holes here are much narrower and depend much less strongly on frequency compared to the low 

frequency side of the inhomogeneous absorption line[l,41]. The center frequency of the laser is 

determined with a Jarrell-Ash 3/4 meter monochromator with a 50 line/mm grating. 

3.        Dependence of the line width on the mean coordination number 

For two different temperatures the hole width dependence on the mean coordination number 

is shown in Fig. 4. At T = 0 K there is an increase in this width from about 0.5 GHz to 1.5 GHz 

over the range of mean coordination numbers from 2.0 to 2.6. Only the data point at <r> = 2.4 

doesn't follow the increasing tendency but indicates a minimum at this value. Note that a rigidity 
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Figure 3. Experimental setup for persistent IR spectral hole burning experiments. 

transition is expected to occur at glasses with this average number of bonds per atom [7] Assuming 
that the widths at zero temperature are lifetime limited, the correspondent lifetimes T\ of the SeH- 
vibration vary from 0.3 ns to 0.1 ns. The width measured at approximately 40K also is shown in 
Fig. 4. It drops continuously with increasing coordination number from a value of 11 GHz at r = 
2.0 to approximately 5 GHz at r = 2.6. This different dependence may be a consequence of the role 
of the dephasing time in the hole width at elevated temperatures. 
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Figure 4. Dependence of the low temperature homogeneous hole width on the mean coordination number < r >. Solid 
circles and left scale: hole width extrapolated to zero temperature. Open squares and right scale: hole widths at T = 
40K. 
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In Figure 5 the results for the temperature exponent b are displayed as a function of the mean 

coordination number <r>. Figure 5 shows the temperature exponent at FWHM range from 1.5 to 

2.0. The smallest value is measured at a mean coordination number <r> = 2.0, i.e. in the pure 

Selenium sample. With increasing coordination number the temperature exponent rises, the 

strongest between mean coordination numbers 2.0 and 2.1. Notice that although the compositions 

of sample no. 3 and no. 4 are different, their mean coordination number is the same (<r> = 2.057) 

and so is the result for the temperature exponent. 
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Figure. 5. Temperature exponent b versus mean coordination number < r >. 
(a) Data corresponding to evaluation at FWHM. 
(b) Data corresponding to evaluation at 3/4 of the maximum are plotted as solid diamonds; data corresponding to 
evaluation at 1/4 of the maximum as open squares. 

We speculate that the increase in the temperature exponent with <r> might be connected to a 

transition of the purely chain like structure of the Selenium to a higher dimensional structure. 

According to the model proposed by Phillips[5,6] the structure in the GeAsSe glasses consists 

mainly of one dimensional units for 2 < <r>< 2.06. In the region between 2.08 and 2.18 cross 

linking of the Se-chains by fourfold coordinated Ge and threefoldcoordinated As atoms leads to the 

development of structures with two-dimensional character and above that value to three dimensional 

clusters. These ideas are supported by measurements of the viscosity of AsxSei.x and GexSe!_x 

glasses[42]. They show significant drops in the entropy of activation for viscosity at r = 2.08 and 

2.18. The first value coincides with the transition from a sharp rise to a flatter <r> dependence of the 

temperature exponent in our experiment. The transition to structures with higher dimensions doesn't 

seem to influence the temperature exponent significantly. There is no indication of any change in the 

exponent at the customary topological thresholds at <r> = 2.4 or 2.67. 
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The dephasing of optical centers in glasses at low temperatures has been attributed to an 

interaction with two level systems which leads to a power law in the temperature dependence of the 

homogeneous linewidth. If the density of two level systems varies with energy as &1 and the 

strength of the interaction as rn, the temperature exponent[43] is given by (l+|i) n/3. For a dipole- 

dipole interaction n=3, for a dipole-quadrupole interaction n=4, etc. Within the framework of this 

model, a systematic increase of the temperature exponent may indicate that either |i or n increases 

with mean coordination number. If one assumes that \i remains constant since it is a universal 

property of glasses and has the value 0.3 as found from thermal experiments in other glasses, the 

increase of the temperature exponent from 1.5 to 2.0 leads to an increase in n from 3.5 to 4.6. These 

values may indicate that already in pure Se the interaction between two-level systems and the optical 

centers is of higher order than dipolar. Note that the resulting interact would then be consistent the 

non-Lorentzian shape of the observed hole spectra. On the other hand, it is difficult to explain within 

the framework of this model why most of the change in the temperature exponent shown in Fig. 5 

would occur in the range 2 < <r> < 2.1. 

In summary we have performed persistent infrared spectral hole burning experiments on the 

inhomogenously broadened vibrational stretch band of SeH-defects in GeAsSe glasses over the 

temperature range from 1.5 to 50 K. The sample compositions were varied to systematically 

investigate the influence of the mean coordination number between r = 2.0 to r = 2.6 on the 
dephasing time. The observed widths in this limit follow a temperature dependence according to r0 

+ a Tb. The temperature exponent b is found to increase with mean coordination number from 1.5 at 

<r> = 2 to 1.9 at <r> = 2.6. In the same range of coordination numbers the width at zero 

temperature T0 shows a tendency to increase, which is interrupted by a possible minimum at r = 2.4. 

This result suggests that the lifetime of the mode also depends on <r>. All of these findings suggest 

that the microscopic topology of the glass plays a significant role in determining the vibrational mode 

relaxation dynamics. 

B.      Vibrational relaxation of diatomic molecules in alkali halide crystals 

1.        Host dependent lifetime of the CN ion 

At low concentrations, a diatomic molecular impurity in a crystalline lattice whose internal 

vibrational mode is high in frequency relative to the host phonon bands is generally expected to 

decay radiatively at low temperatures, since nonradiative multiphonon relaxation constitutes an 

unlikely large-order process. This expectation is borne out in the cases of[44-46] CO and of NO in 

rare-gas matrices[44-46]. The 4.8 (im (2080 cm"1) vibrational stretching mode of CN" doped in a 

number of different alkali halides [47-52] decays mainly radiatively at low temperatures with a 

lifetime on the order of 10 ms, in contrast to the ~5 ps nonradiative vibrational relaxation time 

measured for CN" in aqueous solution [53]. Although a diatomic has only one normal mode of 
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Vibration, thus avoiding the complex issue of rapid energy redistribution among the internal modes 

of a polyatomic molecule, it is clear that an enormous range in relaxation times can nevertheless 

occur for the same diatomic molecule in different environments. Here we present the first 

measurements of the vibrational lifetimes of CN" in silver halides, finding times intermediate 

between those in the potassium, rubidium, and cesium halides and those in water. In seeking to 

understand the origin of the nonradiative decay channel for cyanide in the silver halides, we have 

discovered the existence of two local modes at 182 (207) cm"1 and 299 (317) cm'1 for CN" in AgBr 

(AgCl). By supposing that the stretching vibration is decaying into an appropriate number of these 

localized phonon modes, we can rationalize the relaxation rates of CN" in all of the solids with a 

single scheme: an energy gap law in which the highest-frequency bulk or localized phonons, as 

appropriate, constitute the dominant accepting modes. This model predicts that NaCl and NaBr must 

also have high-frequency local modes, in order to explain their short relaxation times (a few hundred 

microseconds), and these modes are in fact found. 

Furthermore, we can explain the picosecond relaxation found for CN" in water, by assuming 

that the internal vibrations of the host molecules provide a near-resonant accepting mode. 

Extrapolating the energy gap law down to a single accepting mode gives a sub-nanosecond lifetime, 

in good agreement with the observed lifetime, especially in light of the fact that we have not made 

any corrections to the coupling parameters in the energy gap law. 

This explanation for the rapid vibrational decay of the cyanide via coupling into local modes 

clears up a 10-year-old puzzle regarding the relaxation of CN" in the sodium halides. In these hosts, 

it was found that the low-temperature decay times are only a few hundred microseconds [54], in 

striking contrast to what was found for CN" in other alkali halides, but very similar to what we have 

found in the silver halides. Our measurements of the sideband spectra of samples of 0.5 mol % CN" 

in NaCl and NaBr show a line at +304 (+262) cm"1 in NaCl (NaBr), which has the same width and 

temperature dependence as the local mode sidebands found in AgCl and AgBr. Thus, it is 

reasonable to also identify it as a local mode in this case [55]. 
In Fig. 6(a) the low-temperature relaxation times T have been plotted versus the number of 

accepting modes N. For the alkali halides, these times were obtained by extrapolating the plateau in 

Liity's data [54] at around 100 K down to zero temperature. This corrects for the low-temperature 

rise in his observed decay times, which we attribute to reabsorption of the l-»0 photons with a 

consequent bottleneck in the propagation of light out of the samples. (By about 100 K, this is no 

longer a problem because the 0-»l absorption is substantially weakened and the relaxation becomes 

increasingly nonradiative.) The highest-frequency accepting mode possible has been used for each 

host in the figure, i.e., the LO phonon frequency [56] in the case of the potassium, rubidium, and 
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Figure 6. Relaxation times for the 1 ->0 vibrational decay of CN" in the indicated hosts at (a) 1.7 K, and (b) 300 K. The 
lifetimes of the silver halides were obtained by sideband pumping and/or by doubling the times found by overtone pumping. 
The accepting mode frequency, used to calculate the number of modes which match the vibrational energy, was chosen to be 
the LO phonon frequency [56]for the potassium, rubidium, and cesium halides, and the highest-frequency local mode for 
the sodium and silver halides. 

cesium halides and the highest-frequency local mode in the case of the sodium and silver halides. 

The overall relaxation time x is predicted to be 

r = {l/rrad+l/rnonrad)~l, (3) 

where the radiative lifetime is Trad = 50 ms [47] and the nonradiative lifetime Tnonrad is given by Eq. 

(1) at low temperatures. A- high temperatures, it is necessary to modify Eq. (1) to include the 

temperature dependence expected for N accepting modes [57]: 
hVnrrlkT 

rnonrad(T)~ T0e 
BN 

-1 
N 

chvvib/kT_l 
(4) 

The fraction is equal to unity in the limit as T->0, so that this equation correctly reproduces Eq. (2) at 

low temperatures. The curves in Figs. 6(a)-(b) are plots of Eq. (3) after substituting Eq. (4), both 
fitted with the values XQ = 50 ps and B = 1.93. Considering that B only depends logarithmically on 

the coupling constant and on N [44], any variations of B from host to host are expected to be small 

enough to justify fitting the data, within experimental error, with a constant value of B. 

Furthermore, at 300 K, where the relaxation is largely nonradiative, the same value of B fits both 

bulk and localized phonon accepting modes, indicating that their vibrational couplings to CN" must 
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be similar (again on a logarithmic scale), which can be understood as follows. Consider the 

vibrationally-induced displacements of the host atoms surrounding the impurity: in the bulk 

accepting mode case, this distortion can be described as a superposition of phonons which 

subsequently propagate away from the defect in all directions; in the local mode case, a similar 

superposition of host atom displacements occurs, the difference being that the distortion 

subsequently remains localized. 

If we extrapolate the curve in Fig. 6(b) down to a single accepting mode, we obtain a 

relaxation time of a few hundred picoseconds, 9 orders of magnitude smaller than the radiative 

lifetime of CN". Interestingly enough, this is not too different from the relaxation time measured for 

CN" in water [58], particularly if one makes allowance for the fact that the cyanide coupling constant 

in water would be expected to be somewhat different than that in salt crystals. This suggests that a 

CN" stretching mode is exchanging energy with a single nearly-resonant internal vibration of the 

water molecules. 
In conclusion, the 2-> 1 vibrational relaxation times of CN" in AgCl and AgBr have been 

measured by overtone pumping and have been found to be 80 fis and 170 |is, respectively, at 1.7 K. 

This is roughly 1000 times faster than the times measured for CN' in the potassium, rubidium, and 

cesium halides. Two local modes for the cyanide-doped silver halide systems have been discovered 

and shown to be coupled tc the CN" stretching mode by sideband pumping; the higher-frequency 

one at about 310 cm-1, well above the host LO phonon frequencies, gives rise to an enhanced 

relaxation rate according to an energy gap law. This model correctly predicts that NaCl and NaBr 

must also have cyanide impurity local modes, since their relaxation times are comparable to those of 

the silver halides. By choosing the highest-available-frequency lattice or localized phonon to be the 

accepting mode, a temperature-dependent energy gap law successfully rationalizes the data for 

cyanide in all of the solids. The fitted law, furthermore, explains why the relaxation of CN" in 

aqueous solution occurs on a sub-nanosecond timescale, because the internal vibrations of the water 

molecules constitute an effective nearly-resonant accepting mode. 

2.        Ultrafast vibrational relaxation of diatomic hydrides 

In contrast, with the CN- ion above our measurements [59] of the vibrational relaxation of 

OH" and SH" in the potassium halides indicate lifetimes on the order of 1 ns, much shorter than the 

radiative limit of -50 ms. This agrees with the experimentally-determined upper limit of 5 ns on the 

SH" nonradiative lifetime, deduced previously from the lack of 2->l vibrational fluorescence, 

following 0->2 overtone pumping. [60] These results are extremely surprising, since the stretching 

modes of these hydrides are even higher in frequency than those of CN" in the same hosts, and 

hence a higher-order multiphonon-relaxation process is anticipated. 
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An alternative nonradiative decay channel open to select systems is vibrational relaxation into 

rotations of the impurity. The first workers to advance such a model were . In 1975, Bras and 

Bondybey [61] studied vibrational relaxation within excited electronic manifolds of OH and OD in 

crystalline Ne at 4.2 K. They found that the i)=l->0 relaxation rate is 2.3 times faster for OH than 

for OD. Noting that this contradicts a multiphonon-relaxation model, they proposed that the 

vibration decays into nearly-free rotations. Matching the vibrational transition, voi, to the rotational 

energy requires v01 = BJ( J +1), where B is the rotational constant and J is the rotational quantum 

number of the accepting level. Neglecting the factor of 1, since the rotational quantum number is 

large, gives 
J~fi^7B (5) 

(with a bulk phonon taking up the difference in the event that the right-hand side is non-integral). 

But the stretching frequency is proportional to the inverse root of the reduced mass of the molecule, 

whereas the rotational constant is proportional simply to the reciprocal mass via the moment of 

inertia. Hence, J «= (fi)1'4 and OD is predicted to be a -20% higher-order process than OH, 

explaining its slower relaxation. Similar measurements[62,63] and conclusions were made for NH 

and ND in Ne, Ar, and Kr. Minimal temperature dependence of the vibrational lifetimes was found 

for this latter case between 4.2 and 37 K, further ruling out multiphonon decay. For rotations the 

spacing between adjacent levels is strongly non-uniform and the temperature dependence is 

controlled by a few low-frequency transitions and hence is expected to be much weaker. 

Other molecules in rare gas matrices which exhibit an isotope effect opposite to that predicted 

by a multiphonon decay model include HC1/DC1 and CH3F/CD3F. Beginning with the former, it is 

generally believed[64,65] that these molecules exhibit weakly-hindered rotations in low-temperature 

Van der Waals matrices. The vibrational relaxation has been measured.[66,67] Fairly recent 

results[68] on BH2U2, which is similar in structure to CH3F but which was doped into the ionic 

alkali-halide matrices instead of the rare gases, indicate the existence of an efficient nonradiative 

decay channel. Since this molecule is both light and has a small moment of inertia, high-frequency 

local translational and librarional modes arise, into which the vibrational energy was proposed to 

relax. 

Over the last grant period, a comprehensive study of the vibrational relaxation of the diatomic 

chalcogen hydrides in the alkali halides was carried out. In addition to extending the OH" and SH" 

measurements to several additional hosts, new results are presented for OD" and TeH". A total of 18 

different systems are measured and the vibrational relaxation times, T\, are found to vary from 0.3 to 

3 ns. The lack of a significant OH" isotope effect in the relaxation time upon deuteration, in 

particular, rules out a multiphonon-decay model, as the deuterated species is a factor of 1.357 
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(approximately V2) closer in frequency to the host phonon bands than is the hydride, and hence its 

relaxation process would be that much lower order. Assuming that the vibration-to-phonon coupling 

constants for the two isotopes are identical, one would then have expected an exponentially-faster 

decay rate for OD" compared to OH", in contrast to experiment. On the other hand, spectroscopic 

measurements indicate the existence of a superoptic local mode, identified as a librational mode of the 

molecule about its center of mass.[59,69,70] An energy gap law is found to describe the relaxation 

of the vibrations into these reorientational modes, using one set of coupling constants for all of the 

chalcogen hydrides. These results are shown in Fig. 7. One surprising result is that the coupling 

appears to be much stronger for these molecules even though the high frequency accepting modes 

both occur at about the same frequencies as for CN- in silver or sodium halides. 

Unexpectedly, the vibrational relaxation times of the stressed crystals are not very different 

from those of their unstressed counterparts. For example, SH" at a substitution^ site having only I" 

neighbors on its nearest < 110> positions is found to have the same lifetime as that of SH" at a 

crystalline site wherein one of these neighbors has been replaced by a Br" ion. This relative 
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Figure 7. Comparison of the l->0 vibrational relaxation times (symbols) of CN" and of XH'/XD' in the alkali and silver 
halides at 1.7 K. The abscissa gives the ratio of the vibrational frequency to the accepting mode frequency, defined to be the 
longitudinal-optic phonon frequency for CN" in the potassium, rubidium, and cesium halides, the highest-frequency 
localized-translational mode in the case of CN' in the silver and sodium halides, and the librational frequency for the 
chalcogen hydrides. 
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insensitivity of the decay rates to the immediate local environments of the diatomics suggests that the 

coupling between the molecules and the lattice is weak. Yet this is difficult to reconcile with the fact 

that the the relaxation is fast: specifically, the decay of SH" into reorientational modes is found to be 

orders of magnitude faster than the decay [71] of CN" in the sodium and silver halides into an 

equivalent number of translational modes. If the coupling for the hydrides were weak, much slower 

relaxation would be expected. 

Also surprising is the discovery that the assigned librational mode disappears with increasing 

temperature. This evolution can be seen most easily by examining the sideband spectrum associated 

with the stretch vibrationai mode. Figure 8 shows spectra for SH" and SD" in KBr at three different 

temperatures. (The few extremely sharp features superimposed on these sidebands are associated 

with small concentrations of other impurities.) In each sample the low frequency phonon-induced 

sideband absorption increases as the temperature increases but at the same time the mode at the 

0 200 400 
frequency shift (cm-1) 

Figure 8. Absorption spectrum of the vibrationai modes and sidebands for SH" and SD" in KBr. The temperature is 
1.7 K and the resolution is 1 cm-1, (a) SH"; (b) SD". In each case the stretch mode is at zero frequency. The broad 
absorption band is associated with the defect activated phonon contribution. The high frequency mode that disappears 
with increasing temperature is identified by the arrow. 
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highest frequency (identified by an arrow) decreases in strength. Since this is the librational mode 

and since the mode has vanished by 100 K it would appear that at high temperatures the vibrational 

lifetime woulod be much longer than at low temperatures. Although a slight increase in the lifetime 

is seen with increasing tempertature, it is no where near large enough to be compatible with the fact 

that the mode disappears since that should shift the lifetime data into the microsecond range as 

represented by the room temperature CN" data shown in Fig. 6(b). 

C.      Vibrational relaxation of diatomic molecules in glass 

For small matrix isolated molecules, persistent hole buming[72] and photon echo[73] 

experiments probe the dephasing of vibronic excitations, while transient saturation experiments[74] 

can be used to extract the energy decay time. The transfer of vibrational energy from small 

molecules to the condensed matter host is a topic of increasing experimental activity since decay 

times differing by many orders of magnitude have been found. Of particular current interest are the 

relaxation properties of molecules in glassy hosts, where both the effect of site dependent disorder 

and the dynamics of amorphous systems can be studied. Short times (subnanosec) have been 

reported for the OH stretch mode in fused silica, where a decay process into 4 lower frequency 

vibrational modes of the glass has been proposed[75]. Here we describe our IR pump-probe 

measurements for a related small molecule-covalent glass system: the SH stretch mode in As2S3 

glass. 
The measurement of the vibrational relaxation time of the SH stretch mode in hydrogenated 

As2S3 glass provides an important test of the earlier OH-fused silica multi-quanta hypothesis. Due 

to the lack of high frequency excitations in the As2S3 glass[76], at least 7 vibrational quanta are 

required to match the SH stretch mode energy. Thus, a longer lifetime is expected for a relaxation 

due to a 7th order process compared to the 4th order process for OH doped silica glass if the lifetime 

depends mainly on the order of the relaxation mechanism. 

A further reason for this study relates to the earlier persistent infrared hole burning 

measurements on the SH stretch mode in hydrogenated As2S3 glass samples at low 

temperatures[77]. This study revealed a strong frequency dependence of the persistent hole width 

within the inhomogeneously broadened SH absorption band. The proposed explanation for the 

variable relaxation time is a frequency dependent coupling of the stretch mode vibration to the matrix. 

The total dephasing time T2 is given by Eq. 3. Although persistent hole burning experiments 

provide information about the total dephasing time only, the decay time can be estimated with the 

additional assumption that there are no other dynamical processes such as spectral diffusion[18] and 

that the energy relaxation time determines the homogeneous line width at low temperature. The 

obvious advantage of performing picosecond pump-probe measurements is the direct measurement 
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of the pure energy relaxation time Tu which allows us to test the proposition that pure dephasing 

does not contribute to the hole width at low temperature. 

A picosecond infrared pump-probe saturation technique is used to determine the energy 

relaxation rate Tt. A strong IR pump pulse excites a fraction of the SH oscillators to the first excited 

n = 1 vibrational state. Due to anharmonicity of the mode, the n > 2 transition is not resonant with 

the pump pulse, thus the population in the first vibrational level leads to a bleaching of the 

absorption. After the excitation, the population returns to its equilibrium value due to the relaxation 

of the excited vibrational state with a time constant T^ The relaxation is probed by a weak probe 

pulse as a function of a delay At between the pump and probe pulse. Denoting the intensity of the 

transmitted probe pulse as a function of the delay I(At) and the transmitted probe intensity of the non- 

saturated sample Io, we find for the relation between the transmitted probe intensity and the 

relaxation time: ln(I(At)/I0) « expC-At/Tj). 
Figure 9 displays the experimental pump-probe setup. Tunable IR picosecond laser pulses, 

resonant with the SH (0 -> 1) transition, are generated by difference mixing the radiation of a 

modified Continuum PD10 dye laser and a Continuum PY61 active-passive mode locked YAG laser 

in a LiNb03 crystal. Energies of about 10 ^J per pulse are obtained at 2500 cm-1. Care was taken 

to adjust the linewidth (FWHM) of the IR pulse, averaged over many laser pulses, to a value of 

about 4 
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Figure 9. Experimental infrared pump-probe setup. The following abbreviations are used: bs: beamsplitter; cc: cube 
comer reflector, gm: grating monochromator with InSb detector; il: infrared laser system; od: optical delay line; pm: 
parabolic mirror, rd: reference detector; sd: signal detector; tc: temperature variable cryostaL 
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cm-1. The length of the infrared pulses is 15 psec and the repetition rate of the laser system is 10 Hz. 

A small fraction of the pulse is coupled into a monochromator equipped with an InSb detector to 

monitor the frequency. The main IR pulse is focused on the sample by means of an off-axis gold 

coated parabolic mirror. The saturation ( < 5%) of the SH absorption line is measured by a weak 

probe beam, split off from the main pump pulse, delayed with respect to the pump pulse on an 

optical delay line and detected by a thermoelectrically cooled PbSe detector, mounted on an 

integrating sphere. The sample is mounted on the cold finger of a temperature variable cryostat. To 

ensure a good thermal link, the 2 mm thick sample, cut and polished from a hydrogenated As2S3 

ingot, is attached with indium to the copper block of the sample holder. The sample temperature is 

monitored by a calibrated carbon resistor. 

The SH doped samples are prepared by melting pure As2S3 glass in a sealed quartz tube 

filled with hydrogen gas at one atmosphere. Upon first heating the tube to 500 C for 30 minutes and 

then air quenching, a strong stretch mode band is produced. The solid line in Fig. 10 shows the 

absorption spectrum of the hydrogenated As2S3 sample in the region of the SH absorption band at 

1.5 K, with an absorption maximum at 2485 cnr1. The width of the inhomogeneously broadened 

line is about 100 cm*1, reflecting the influence of the disordered host on the stretch mode frequency. 

Low temperature relaxation times were measured at a sample temperature of 8 K in the frequency 

range between 2425 cnr1 and 2505 cnr1. The results are represented by solid circles in Fig, 10. 

We 
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Figure 10. Frequency dependence of the lifetime of the SH stretch mode in AS2S3 glass as determined by two different 
spectroscopic techniques. Solid circles: measured using psec pump-probe technique (8K). Open circles: lifetime 
extracted from hole burning results (1.5 K) obtained from Ref. [77]. The solid line represents the IR absorption 
coefficient (right scale) produced by SH. 
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find a frequency dependent lifetime that varies from 60 psec at 2425 cnr1 to 350 psec at 2502 cm"1. 

Due to inadequate absorption, no relaxation times could be measured at lower or higher frequencies. 

Compared to the vibrational frequency of the free SH molecule at 2599 cm"1 [78], the frequencies of 

the SH molecules in the host are red shifted, which is the case when the coupling of the excited 

molecule to the host is stronger than that of the molecule in the ground state[78]. Thus, an SH 

molecule with a stretch mode at the high frequency side of the band is less strongly coupled than a 

molecule in the low frequency wing. We find that the decrease in the vibrational lifetime is directly 

related to an increased coupling to the glassy host. Also plotted in Fig. 3 are data extracted from the 

earlier hole burning experiments of Ref. [77] (open circles), measured at a sample temperature of 1.5 

K. The plotted lifetimes are obtained under the assumption that the hole width at low temperature is 

determined by the energy relaxation time T,. The good agreement between the two data sets shows 

that this assumption is indeed justified and that no other dynamical processes such as spectral 

diffusion are obscuring the persistent hole burning results. 

The temperature dependence of the lifetime has been determined at three frequencies, 2466 

cm-1, 2494 cm"1 and 2503 cm-'. For all the tested frequencies, the relaxation times remain constant 

up to a temperature of 90 K within the error of the experiment. At higher temperature the decay rate 

increases gradually, becoming a factor 4 larger at room temperature. As expected, this behaviour is 

quite different from the temperature dependence of the persistent spectral hole width, which broadens 

quadratically due to dephasing. In the temperature range between 1.5 K and 10 K this dephasing 

leads to a broadening of the hole width by a factor of 10 [77]. 
Comparing the presented results with those found for the relaxation time of the OH stretch 

mode in fused silica[75], we find that the relaxation times of both are on the order of 100 psec at low 

temperatures, although the order of the respective decay processes is very different. Thus the fourth 

order decay process of OH mode in silica gives the same low temperature decay rate as the seventh 

order process of the SH mode in AS2S3. In order to account for this similarity, the coupling constant 

must increase drastically from the OH-silica to the SH-chalcogenide system, even though both 

molecules are bonded covalently to their respective networks. 

In conclusion, we have measured the frequency and temperature dependence of the 

nonradiative relaxation time of the first excited state of the SH vibrational mode in hydrogenated 

As2S3 glass. Within the inhomogeneously broadened band, a strong decrease in the low temperature 

lifetime is found for increased coupling to the host. Our findings agree with the frequency 

dependence of the low temperature line width found in persistent IR spectral hole burning 

experiments. The similarity of the results from both types of experiments show that the persistent 

hole width at low temperature is dominated by the energy relaxation time T{. The temperature 
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dependence of the energy relaxation time can be explained within the framework of multi-vibrational 

relaxation, where the stretch mode relaxes into 7 quanta of the high frequency peak in the density of 

vibrational states of the glass network. We find a low temperature SH lifetime in the chalcogenide 

glass comparable to that of OH in fused silica, even though the orders of the processes are very 

different. This indicates that the magnitude of the coupling coefficient, not the order of the process, 

is the key ingredient in the decay dynamics for stretch modes of small molecules in these amorphous 

systems. 

D.       Pocket Vibrational Modes in Crystals 

The addition of low concentrations of substitutional Ag+ ions to KI produces an unusual 

impurity induced vibrational spectrum which is the most thermally unstable known. Because of this 

property we have experimentally examined this system in some detail[79-83]. The temperature 

dependent spectrum is shown in Fig. 11. The substitutional Ag+ defect gives rise to two strong 
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Figure 11. Absorption coefficient of KI + 0.4 mole% Agl below the reststrahl region of KI, at 1.4 K (upper trace) and 11 
K 0ower trace). The resolution is 0.1 cm"1. The two spectra are displaced by a division on the ordinate axis for clarity; 
also, the ordinate scale in the region between 25 and 75 cm"1 has been expanded lOx to show the weak modes in the 
acoustic-phonon region. The dominant features are the KI:Ag+ gap and resonant modes at 86.2 and 17.3 cm" , 
respectively; additional features are identified in the text. The inset shows the temperature dependence of the strengths of 

the KI:Ag+ features. 
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localized modes: a resonant mode in the acoustic phonon region, at 17.3 cm"1, and a gap mode in 

the 
region between the acoustic and optic phonons, at 86.2 cm"1. Additional weak features due to Ag+ at 

30,44, 55.8, and 63.6 cnr1 (in the KI acoustic-phonon region), and at 84.5 cm"1 (in the KI gap 

region) caused by 39K+ -» 41K+ host-lattice isotopic substitution [84], are also visible in the lower- 

temperature (1.4 K) spectrum. Small concentrations of other naturally-occurring impurities in these 

crystals give rise to additional gap modes, at 76.8 and 77.1 cnr1 due to Cr and at 82.9 cm*1 due to 

Cs+ (and another at 78.9 cm"', of unknown origin). In the higher-temperature spectrum of Fig. 11 

(UK), all of the Ag+ features are weaker while the strengths of features associated with other 

defects (e.g., Cl" and Cs+) remain unchanged; in addition, new features associated with the Ag+ 

defects appear at 69 and 78.6 cm-'. The inset of Fig. 11 shows the "universal" temperature 

dependence of the strengths of the KI:Ag+ low-temperature configuration features, including the 

strong resonant and gap modes (after Ref. [85]). 

Figure 12 presents the absorption coefficient of KI + 0.4 mole% Agl in the phonon gap 
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Figure 12. Impurity induced absorption coefficient of KI+0.4 mole% Agl. The restricted frequency interval covers the 
phonon gap region of KI. The resolution is 0.1 cm"1. The temperature of the upper spectrum is 1.6 K, and the lower 
one, 8.8 K. The strong mode at 86.2 cm" * is the on-center KI:Ag+ gap mode. This mode has lost about half its 
strength in the higher-temperature spectrum. The doublet at 76.8 and 77.1 cm"1 is due to Cl" and the single peak at 
82.9 cm"1 is due to Cs+. The weak temperature-dependent peak at 84.5 cm"1 is the Ag+ isotope mode. Note that the 
KI:Ag+ modes, which have a FWHM of 0.5 cm"1, are significantly broader than other KI gap modes, whose FWHM 

is -0.14 cm"1. 
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region of KI for two different temperatures at a resolution of 0.1 cm"1. These data provide the 

strongest evidence for the presence of pocket modes around the defect site. The strong impurity- 

induced feature at 86.2 cm'1 is the KI:Ag+ gap mode corresponding to the low temperature on-center 

configuration of the defect system. Most of the weaker spectral features seen here and identified in 

the figure caption are associated with other unwanted monatomic impurities, present in either the host 

or dopant starting materials. When the temperature is increased from 1.6 K to 8.8 K, the strengths 

of this strong Ag+ gap mode and a neighboring satellite line at lower frequency (identified by the 

arrow) are reduced in strength by a factor of two while the weak but sharp modesdue to the other 

impurities remain unchanged. The center frequencies of these two Ag+ modes show a very small 

shift to lower frequencies with increasing temperature, which cannot be seen in this figure. At the 

highest frequencies shown in the figure, the temperature change produces an increase in the host 

absorption coefficient due to intrinsic difference band processes[86]. 

That the entire T = 0 K spectrum disappears upon heating to 25 K[84,85,87] is a result of the 

Ag+ ion moving from the on-center configuration to an as yet incompletely determined off-center 

position[88]. With increasing temperature, the strengths of the (T = OK) IR [89,90] and Raman[87] 

resonant mode peaks simply vanish, with a single distinguishing temperature dependence and with 

very little shifting or broadening. This behavior is quite different from that of systems exhibiting 

thermal instabilities driven by "soft" modes, whose frequencies approach zero with decreasing 

temperature[91]. Moreover, the observed rate at which the strengths in the KI:Ag+ induced 

vibrational spectra disappear is much faster than can be explained by population effects associated 

with just the Ag+ ion moving off center in a static anharmonic potential well, suggesting that the 

high-temperature configuration has a large number of available states of nearly the same energy as 

the on-center configuration[85]. This raises a number of questions: one has to do with the 

applicability of standard Lifshitz defect phonon theory[92-94], which assumes a single, well- 

isolated, potential energy minimum while another has to do with the large entropy associated with 

this single ion transition. 

Motivated by these experimental results, we have carried out a series of detailed 

investigations of the T = 0 K on-center vibrational properties of this unusual point defect 

system[84,87,95]. Surprisingly, we find that despite this system's highly anomalous thermal 

behavior, its T = 0 K on-center dynamics are well-described by a quasiharmonic defect model, 

which treats anharmonic effects as perturbations. However, the experimental/theoretical 

comparisons have revealed several unusual properties, brand new is a novel class of impurity 

modes, called pocket gap modes, whose vibrational amplitudes are not peaked at the defect site but 

rather are highly localized on host lattice ions well-removed from the Ag+ [84,96]. Figures 13(a)- 

25 



13(c) show our computed displacement patterns for gap modes of all three symmetry types. For 

comparison, Fig. 13(d) also shows the displacement pattern for the 17.3 cnr1 Tlu resonant mode, 

which is seen to be peaked on the impurity and its nearest neighbors. In contrast, the three gap 

modes consist of very similar isolated pockets of displacements on the (200) family of K+ ions; 

hence the name pocket modes. The near degeneracy of these modes indicates that the frequencies are 

mainly determined by the local dynamics within each pocket, with the pockets being weakly coupled 

to produce the different symmetry modes. The three gap modes have some very novel properties. 

First, despite their different symmetries, the frequencies are very nearly degenerate. Second, the 

computed displacement patterns are strongly 
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Figure 13. Expected displacement patterns for different KI:Ag+ impurity modes, (a) 87.2 cm"1 Alg pocket gap mode, (b) 

86.0 cm-1 E„ pocket gap mode, (c) 86.2 cm"1 Tlux pocket gap mode, (d) 17.3 cm'1 Tlux resonant mode. Here Tiux 
denotes the f}u partner which couples to x-polarized radiation, and Eg denotes one of two degenerate Eg partners. For our 
choice of partners, panels (a), (c) and (d) show displacements in the x-y plane, while (b) shows displacements in the y-z 
plane. Note that the displacement pattern for the resonant mode is peaked on the defect and its nearest neighbors, while the 
displacement patterns for the pocket gap modes (a)-(c) are peaked on the fourth neighbor sites, away from the defect 
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localized on the defect's fourth neighbor (e.g. 200) potassium ions, away from the Ag+ impurity and its 

nearest neighbors. This is in sharp contrast to the usual localized or resonant mode behavior, in which 

the displacement patterns are peaked at or adjacent to the defect. 

In order to probe the anharmonicity associated with the KI:Ag+ on-center configuration, we 

undertook studies of uniaxial stress[95] and dc electric field induced frequency shifts[97], both for 

the pocket modes, and for the low-lying impurity resonant modes[81,83] that exist below 20 cm"1. 

The fact that the pocket mode displacements are sharply peaked on the (200) family of host ions 

renders the pocket modes sensitive to the host lattice anharmonicity near those sites, whereas the 

resonant modes probe the defect and its nearest neighbors. Within a quasiharmonic approach, which 

treats the anharmonicity perturbatively, the effect of either an applied stress or an applied E-field is to 

move the equilibrium positions of the ions, thereby renormalizing the harmonic force constants via 

the local cubic and quartic anharmonicity. The two types of experiments produce local strains of 

orthogonal symmetries and hence provide complementary information. We find that with the 

addition of Ag+ electronic quadrupolar deformability to the original perturbed harmonic shell model, 

the predicted static electric field induced pocket gap mode frequency shifts are in good agreement 

with the experimental results. In addition, this new model reproduces the measured dc electric field 

induced frequency shifts of the KI:Ag+ low-frequency resonant modes, whose measured E-field 

shifts are nearly two orders of magnitude larger than those for the pocket modes. The model's 

success, then, actually deepens the mystery surrounding the anomalous on/off center thermal 

instability by showing that this system's T=0 K on-center dynamics are well described by a 

quasiharmonic model, albeit a model which has revealed some fascinating new and unexpected 

behavior. 
Thus based upon the successes of this study, we conclude that the Ag+ electronic 

quadrupolar deformability play an essential role in determining the KI: Ag+ on-center dynamics. Our 

results strongly support earlier speculations that the Ag+ electronic quadrupolar deformability is an 

important feature in the dynamics of other host-silver defect systems and of the silver halides [98- 

104], including the superionic conductivity observed in Agl[102]. 

E.       Intrinsic Localized Vibrational Modes in Perfect Crystals 

1. Introduction 
The traditional theory of lattice dynamics, a cornerstone of solid state physics, assumes that 

close to the equilibrium state each atom vibrates in a harmonic potential determined by the positions 

of the rest of the atoms. [94,105] Starting with the Debye explanation of the low temperature specific 

heat of crystals and continuing up to at least the neutron diffraction measurements of lattice 

disoersion curves, harmonic theory and experiment have moved forward together in apparent 
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harmony.[91] But now the increasing number of lattice dynamics puzzles that refuse to go away 

suggests that the harmonic approximation and the analogous renormalized phonon model which 

includes weak anharmonic corrections [91,94] may not cover all of the important possibilities. 

In persistent spectral hole burning experiments it is often found that the source of the photo- 

chemical or photo-physical persistence is unclear. Color center materials which contain simple well 

studied defect centers provide a good example. Even thought persistent hole burning in the zero 

phonon electronic transition of a color center was first observed in 1979, the proposed mechanism, 

photo-ionization by electron tunneling from the zero phonon line excited state to a nearby trap, has 

yet to be demonstrated [1]. Such apparent mysteries in this and other hole burning systems [2] have 

encouraged us to examine anharmonic properties of crystals to provide yet another possible 

mechanism for spectral persistence. 

It is from this perspective that we ask the question, "What happens to the vibrational modes 

of a perfect one dimensional crystal when the anharmonic contribution of the interparticle interaction 

is comparable to the harmonic one?"   It has been demonstrated that a strongly anharmonic interaction 

not only renormalizes the frequencies of the extended modes, but also gives rise to additional modes 

which are localized in space and have frequencies lying out of the plane wave phonon 

bands.[58,106-l 14]   We have identified a qualitative picture of the localization mechanism for 

perfect anharmonic 1-D lattices which is outlined below. It also has been possible to construct an 

analytical description of anharmonic localized modes for realistic potential. It is easiest to start with 

localized modes for monatomic lattices with quartic anharmonicity. Next, the addition of cubic 

anharmonicity to this potential is shown to produce a new effect, that of a localized dc distortion at 

the local mode site. Once this has been completed nearly all of the properties of the mode have been 

found. Two important additions are the fact that they occur in the gap between optic and acoustic 

branches of the lattice and that all of these modes can move through the lattice.  These modes have 

not yet been identified conclusively in experiment and finding them is one of the components of the 

present proposal. 

2. Qualitative description 

Consider a monatomic ID lattice of N particles, where the nearest-neighbors are connected 

by springs having a positive even order anharmonicity. The potential could consist of a harmonic 

and quartic terms in the form 

V2„4(x) = ^x2+-^x4 , (6) 

where K2,Ki > 0 and x is the deviation of the spring's length from its equilibrium value. One effect 

of such a positive anharmonicity is to increase the frequency of each mode in the plane wave 

spectrum, but the eigenvectors will still extend over the entire lattice as long as the frequencies are 
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within the phonon band. Another effect is the localization of a vibrational mode in this perfect 

anharmonic lattice if the amplitude is sufficiently large with respect to those of plane waves, as the 

following qualitative argument illustrates[106]. The energy of N independent oscillators 

characterized by frequency co , mass m and amplitude u is Ntna)2(u2), which is compared to hco 

in the semiclassical approximation. The rms amplitude of the vibration of a particle is then 

f(7Ä ~ ^n/maN. For the case of an extended mode, the number of particles vibrating within 

such a mode is large (N.,xt » 1 ) so the rms amplitude at each site will be small. This need not be 

the case for the highest frequency mode which is not bounded from above by another mode.   Since 

it can split off from the top of the plane wave spectrum as shown in Fig. 14(a) and become 

localized, it has a choice of an amplitude pattern either plane wave or localized. Which will it 

choose? The answer depends on the magnitude of the anharmonicity. For the localized mode case 
iV,0C ~ 1 and the vibrating panicles will have significantly larger amplitudes, which increases the 

effective anharmonicity of the potential and hence shifts the frequency into a forbidden region away 

from the plane wave spectrum. Only localized modes with imaginary Bloch wave vectors can exist 

in regions outside of the plane wave spectrum so given sufficient anharmonicity the localization 

argument is self-consistent. 
Another example of the anharmonic localization of lattice vibrations can be given with a 1-D 

CO 

local mode 

(b) 

gap mode 

Figure 14. Positions of the anharmonic mode frequencies relative to the plane wave dispersion curves. Case (a): 
When interparticle interaction has positive anharmonicity, the mode at the top of the plane waves band becomes 
localized. Case (b): A soft interparticle potential leads to the localization of an extended mode in the gap below the 
bottom of the optic band. 
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diatomic chain with a negative anharmonicity in the interaction between nearest-neighbors. The 
potential of the springs could be chosen to be that given by Eq. (1) with K2 > 0 and K4 < 0. Figure 

14(b) illustrates the anharmonic localization of the mode that originally came from the bottom of the 

optic branch. In this case the localization still produces a larger amplitude at a few atoms which 

again increases the effective anharmonicity of the potential, but now a lower frequency results. As is 

the case for the monatomic lattice, the remaining modes of the lattice are plane waves with 

renormalized frequencies. Strictly speaking, such anharmonically driven localization of lattice 

vibrations is only possible when there is a frequency gap in the plane wave spectrum. 

3. Monatomic lattice with cubic and quartic anharmonicity 

An important discovery in how to extend the dynamical solutions to more complex potentials 

was made during this grant period. Previously localized modes were characterized for lattices with 

quartic anharmonicity in the nearest-neighbor potential. In physical systems, odd order 

anharmonicities are present in the Taylor's expansion of the interatomic potential, so a realistic model 

needs to take them into account. (It is just these terms which give rise to the thermal expansion of 

the lattice.) The simplest way to study anharmonic modes in a more realistic environment is to add 

cubic anharmonicity to the V2_4 potential in Eq. (1) giving, 

Plane wave excitations for this 1-D lattice with anharmonic nearest neighbor potentials were first 

studied numerically by Fenni, Pasta and Ulam.[l 15] 
In contrast to the lattice with only quartic anharmonicity, now both odd and even harmonics 

are possible in the frequency spectrum as well as both ac- and dc-components of the localized mode 

eigenvector. After introducing the RWA displacements and solving the equations of motion, the 

eigenvectors and frequencies are found as a function of the cubic and quartic anharmonicity. The 
eigenvectors for different values of A3s K3a/K2 are presented in Fig. 15. For comparison, the 

odd and even eigenvector results without the cubic term are shown in Figs. 15 (a) and (c). Figures 

15 (b) and (d) show that when the cubic term is included, there are again odd and even parity 

configurations, but the vibrations are accompanied by a localized dc expansion around the mode 

center and there is a slight increase in the localization of the ac amplitudes. [116]  This localized dc 

expansion stands out as a unique property of these modes. As long as the potential contains both 

even and odd terms then the localized expansion follows. Associated with such a distortion is an 

effective mass so that when this excitation moves through the lattice the distortion and hence the 

mass moves with it. The resultant particle has two degrees of freedom associated with it: the internal 

vibrational degree and the external translational degree. 
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Figure 15. Vibrational amplitudes and static displacements for odd and even parity anharmonic localized modes. For 
convenience the arrows show the vibrational displacements perpendicular to the actual motion of the particles. 

The vibrational frequency of the even parity mode is plotted in Fig. 16 as a function of the 
cubic anharmonicity, for several values of A4. There is good agreement between the analytical 

frequencies (dot-dashed lines) and the results of MD simulations (open circles). For small values of 
A4, the frequency of the localized mode decreases with increasing cubic anharmonicity until it 

approaches the top of the plane wave spectrum, which is represented by the horizontal dashed line. 

Localized modes in this transition region rapidly decay in MD simulations due to interactions with the 

nearby extended modes. This defines a critical cubic anharmonicity for weakly anharmonic modes, 
such as that characterized by A4 = 0.4, beyond which localized modes are no longer stable against 

decay into plane wave modes. 
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For larger values of A4, the frequency also decreases with increasing cubic anharmonicity 

until a different type of instability occurs. This instability arises when the interatomic potential 

becomes so nonlinear that a second minimum appears for sufficiently large anharmonicities. 

-2.0        0.0 2.0 
A3=K3a/K2 

Figure 16. Frequency of even parity modes as a function of the cubic anharmonicity for three quartic anharmonicities. 
The curves represent analytical solutions of the equations of motion while MD simulation results are plotted as open 
circles. 

The power spectra of the central particle's displacement in two different lattices, one with 

zero and the other with significant cubic anharmonicity are plotted in Fig. 17 for the same value of 

the quartic anharmonicity, A4 = 0.4. These curves are Fourier transforms of the simulated 

displacements of one of the central particles of an even parity mode in a monatomic chain with 1536 

particles and free end conditions. With the cubic term absent from the potential, only odd order 

frequency components should appear in the power spectrum, as illustrated by the dashed curve in 

Fig. 17. The solid curve in the same figure shows that when there is cubic anharmonicity, a zero 

frequency peak appears as a result of the localized dc expansion associated with the anharmonic 
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vibrationai mode. The second and other even harmonics are also present, but with strengths that are 

several orders of magnitude smaller than the third harmonic. An earlier study of lattices with quartic 

anharmonicity shows that the frequency shift due to the third harmonic is at most 5 %, so the effect 

of the second harmonic will be even smaller. [111] Note that the local mode frequency for a lattice 
with cubic and quartic anharmonicity [ (co I com) = 1.12 ] is smaller than the frequency for a lattice 

with 
10* 

-1.0   0.0     1.0     2.0     3.0     4.0 
Frequency,  cj/wm 

Figure 17. Power spectra of the vibrations of the central particles of an even mode in lattices with and without cubic 
anharmonicity. Only odd harmonic of the fundamental frequency are present in the former case (dashed curve), but a large zero 
frequency peak appears with the addition of cubic anharmonicity in the latter case (solid curve). In both cases, the strengths of 
the higher harmonic peaks are greatly reduced with respect to the fundamental, indicating that the single frequency RWA is 
accurate. 
only quartic anharmonicity [ (co I com) = 1.29]. This red shift in the vibrationai frequencies is due to 

the softening of the interatomic potential with large amplitude displacements from equilibrium. 

The illustrations above show that adding cubic anharmonicity to a nearest neighbor potential 

with quartic anharmonicity results in a localized dc expansion near the mode center. So far our 

examples of localized anharmonic vibrations have focused on stationary the modes which are formed 

in perfect lattices. However, because of the translational symmetry of the lattice and Bloch's 

theorem, they should move given the proper initial conditions. The earlier analytical framework can 
be expanded to include slowly moving localized modes by allowing the relative amplitudes £n and 
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<bn to be time dependent. There is now a phase shift between the vibrations of adjacent particles of 

the chain, so the displacement no becomes [117] 

K„(0£a[5„(f) + <Mr)cos(cof-Ä7u/)] • (8) 

where k is the wavevector of the vibrational packet. In this approach, the vibration with frequency 

co is treated as an internal degree of freedom and the translational motion as an external one. This 

allows us to separate a "fast" and "slow" time dependence of the variables within the classical 

equation of motion and find the displacement and velocity patterns for the moving mode 

eigenvector[118]. 
Figure 18 presents an example of a moving localized mode in a monatomic lattice with cubic 

30.0 150.0 60.0        90.0       120.0 
Time (units of  1/am) 

Figure 18. Displacement versus time at several sites in the monatomic chain as a localized mode moves through the 
lattice. The dc distortion translates rigidly with the vibrational envelope. 

and quartic anharmonicity. The displacements at several lattice sites are plotted as a function of time 

to illustrate that the vibrational envelope and dc distortion move uniformly through the lattice. This 

particular mode is characterized by the same potential parameters as the stationary mode represented 

by the power spectrum represented by the solid curve in Fig. 17, but it now has a wave vector 

led = 0.1. In diatomic lattices, moving anharmonic gap modes preserve all of the features considered 

above for moving local mode in monatomic lattices. Namely, a localized dc distortion of the lattice 

follows the center of the moving mode, and the parity of the moving gap mode alternates between 

odd and even when the localized excitation travels through the lattice[l 18]. A new gap mode feature 
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for the diatomic chain is that the light particles of the lattice have large vibrational amplitudes that are 

of the same order of magnitude as their dc displacements in the traveling lattice distortion. In 

contrast, the heavy particles of the lattice participate mainly in the translational motion of the mode, 

i.e. their positions follow the dc lattice distortion exactly while their ac vibrational amplitudes remain 

much smaller those of the light particles. In other words, the internal vibrational motion of the 

anharmonic gap mode is primarily on the light particles, while both light and heavy mass particles are 

involved in the external translational motion of the dc distortion. 

F.   Uncovering Extinction Sum Rules for Particles of Arbitrary Size 

1- Introduction 
Recently, it has been demonstrated both theoretically using causality and sum rules[l 19] and 

experimentally by measuring a ZnS: diamond composite in the far IR[120] that creating squared 

frequencies in a specific second moment formalism is a rigorous and useful way to identify the 

important resonant frequencies of the electromagnetic response of a complex composite medium. 

The generalization of the Lyddane-Sachs-Teller relation[108] is a good example. Usually it is 
derived for a crystal with a diatomic crystal lattice to describe the connection between EQ the dielectric 

constant at low frequencies, e^, the dielectric constant at high frequencies, and the long wavelength 

lattice-optical mode frequencies in between at cty and Ct^, but with optical moments it has a simple 

form even for a composite or a disordered solid such as glass. Further work by Sievers & 

Page[l 11,117] has shown that the connection between the electrodynamic and static dielectric 

properties of a disordered system of macroscopic size but restricted to be much less than the 

wavelength of light again gives characteristic second moment frequencies which replace the squared 

resonant frequency associated with the one mode response previously found for a small single 

crystal. [116] The generality of the characteristic frequency obtained for such particles although 

interesting has not been particularly useful because of the underlying size restriction. During the last 

grant period we extended these characteristic frequency ideas to a particle of arbitrary size. 

2. Sum rules and moments for particles 
The fundamental connection between the extinction cross section and the scattering matrix in 

the forward direction can be found in van de Hülst 1981 [121]. This result, usually referred to as the 

optical theorem, states that 

Re{C,,(G))} = ^Re{S(0°,w)}, (9) 

where 

5(0°, fi» = il(2« + l)[än(a» + bn(0))l (10) 
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with an and bn are the complex scattering coefficients. Detailed descriptions of the evaluation of 

these coefficients for different scattering problems have been given (van de Hülst 1981; Kerker 

1969; Boren and Huffman 1983).[56,121,122] Since 5(0°,co) is acausal response function and 

hence has its poles in the lower half complex plane, it also must satisfy the K-K relations. Boren 

and Huffman[56] have used this result and the connection to the extinction coefficient given by Eq. 

(9) to obtain a dc sum rule in terms of an integral over the extinction coefficient for a sphere. A 

similar procedure is used by us obtain both the dc and the oscillator-strength extinction sum rules for 

an ellipsoid of arbitrary size.[123] The results are 

4KV f77f(0)-^-ol _   2 rdxmCextix)} (U) 

Lic\     H/(0)     J      K. x2 

and 
,2 

lEK-^iL= -J0lL= -rdxRt{Cexl(x)} (any size or shape particle) (12) 
Lf T]ioo c /rJo 

where this latter sum rule is independent of the ellipsoid depolarization factor since in free space 

ATZ(L{ = r\ioo. 

It is also possible to identify a characteristic extinction frequency for an arbitrarily sized 

particle. The exact result depends on whether the particle is conducting or insulating: 
col 

(co2)    = —-      (any size conducting particle), (13) 

/   2\ 
\   {'a =     '       (anv size insulating particle). (14) 
(«*), ifc. 

This last expression characterizing with a frequency the extinction behavior of an ellipsoid of 

arbitrary size has the same form as the generalized Fröhlich relation that relates the squared frequency 

characterizing the absorption behavior of an ellipsoid in the Rayleigh limit with the small particle 

dielectric constant. Although the extinction and absorption spectra in the large particle and small 

particle cases are very different, since the former includes absorption and scattering while the latter 

only includes absorption, it is noteworthy that Eqs. (13) or (14) apply to both. As long as the 

ellipsoids have the same shape then independent of volume the characteristic frequencies are the 

same. One can surmise that for the large particle extinction case there is as much scattering into the 

detector as out of it so that the scattering must average out when it is counted in the second moment 

representation. It also should be emphasized that the characteristic frequency for the extinction cross 

section has the same value as does the characteristic absorption frequency as found for the small 

particle Rayleigh limit. Since this characteristic extinction frequency is independent of particle size, 

size distributions cannot influence its value. 
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Althought the sum rule and second moment expressions have been derived for a 

homogeneous ellipsoid, they can be readily generalized to inhomogeneous particles such as coated 

spheres and particles in planetary atomospheres since they are based on causality regardless of the 

scattering details. The sum rules and second moment have been verified by Mie computation of the 

extinction cross-section spectra of large dielectric spheres and shells.[124] In the inhomogeneous 

case, the left hand side of the dc sum rule is replaced by AnaiO) I c where a(0) is the dc 

polarizibility of the particle which can be calculated from electrostatic theory, and the strength sum 

rule has a particularly simple form with the right hand side of Eq. (23) replaced by j dVo)^ I c 

where the integral is over the volume of the particle. 

To illustrate the sum rules and the characteristic squared frequency l^(02j     in the presence of 

inhomogeneity, we compute the frequency-dependent extinction spectra of both small and large 

hollow spherical shells with various inner to outer radius ratioes q. The optical properties of the bulk 

material are defined by a single Lorentz oscillator, that is, 

e(co) = l + -^4  (15) 
COQ-CO- - iyco 

where (öp=1.3 x 104 cm"1, Ct)0=104 cm"1, and T^K^cm"1- 

The volume-normalized extinction Re{ce;cf (co)/Vm} is plotted in Figure 19(a) for a 

homogeneous sphere with radii ranging from 0.01 (im to 2 |im. Both the size parameter xr = (OQa/c, 

with a the particle radius, and the relative skin depth 5/a = l/xrK, where K is the imaginary part of 

the bulk refractive index, can be used to characterize the nature of the extinction spectrum. The size 

parameter at resonance xr for the homogeneous spheres in Figure 19(a) goes from 0.0628 for the 

smallest particle (0.01 |im) to a fairly large value of 12.57 for the largest particle (2 fim). Since the 

0.01 u\m particle has a large value for 8/a = 5.64 and xr «1 at resonance, this case essentially 

represents the small-particle Rayleigh limit. Absorption is the dominant factor in the extinction cross 

section, see the solid curve in Fig. 19, which displays the resonance structure of the bulk dielectric 

function; however, the 2 (im particle with xr» 1 and 8/a « 1 at resonance is in the opposite 

limit, now scattering is dominant and 408 partial wave coefficients are required at the highest 

frequency of the cross section spectrum (dot-dashed curve). Dramatic changes in the extinction 

spectrum occur in Fig. 19 as the sphere size changes between these two limits. Although the 

extinction spectrum is quite different in each case, Table 1 shows that the numerically determined 

sum rules and optical moment for five different cases remains unchanged, within the accuracy of the 

calculation. 
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Figure 19.  (a) Calculated volume-normalized extinction spectra for spheres and thin hollow spherical shells where 

V = 4/KZ3 / 3 and a is the outer radius. Solid curves from top to bottom correspond to 0.05 um radius spherical 
shells of q = 0, and 0.98, respectively. Dot-dashed curves correspond to 1.0 urn radius spherical shells of q = 0, and 
0.98, respectively, q is the ratio of the inner to outer radius. 
(b) The dc and strength sum rule values as functions of the inner to outer radius ratio q. The open circles and crosses 
indicate the numerical values calculated from the extinction spectra. The solid curves are the theoretical values which 

are S7ü2CC(0,q) I V for the dc sum rule value, and 2(1 - q3)7TQ)2 for the strength sum rule value, respectively, 

with all frequencies in cm"1.  0C(0,q) is the dc polarizibility of a spherical shell.[121] 
(c) Calculated squared characteristic extinction frequency as a function of the inner to outr radius ratio q. The open 
circles and crosses indicate the numerical values and the solid curve is theoretical. 

The stronger the scatter, the higher the frequency required in the integral to exhaust the sum 

rule. To see how the particle size enters in the sum rule calculation even though it does not appear in 
the final result, it's instructive to define an upper limit frequency % to the integral which gives the 

fraction f (> 0.6) of the area counted. For small Rayleigh spheres, this frequency does not display a 

strong size dependence; however, for fairly large spheres (> 0.5 urn), where scattering is dominant, 

this normalized upper limit frequency for the integral co^/cop = [3/(1 - f)4n]((apa/c} varies 
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linearly with the particle radius. This simple linear dependence of the upper limit of the integral 

follows because cof is in the Rayleigh-Gans scattering regime. 

Figure 19(b) shows the volume-normalized extinction spectra calculated for hollow spherical 

shells with a fixed outer radius of a = 1 um but different ratios, q, of inner to outer radius. The 

extinction spectra for particles of moderate q are similar to those for the homogeneous sphere since 

near resonance the radiation can not penetrate the shell to probe the hole inside. However, the 

extinction spectra for a sphere with q = 0.93 where the shell is penetrated near resonance displays a 

different response from that found for the other two cases. Although the extinction spectra shown in 

Figs. 19(a) and (b) are very different each other, the integrated extinction coefficient value over the 

spectrum is unchanged regardless of the particle size and with or without the hole. 

G.   Measurement of the longitudinal asymmetry of a charged particle bunch from 

the coherent synchrotron or transition radiation mm-wave spectrum 

In the past few years information on the bunch form factor, which is the modulus squared of 

the fourier transform of the longitudinal charge distribution, has been obtained for short electron 

bunches from spectroscopic measurements of the coherent far infrared spectrum. [125-134] It is 

assumed in the current analysis method that the bunch is symmetric and hence the results can not 

provide information about the longitudinal bunch asymmetry. In this paper we report on 

measurements of both synchrotron and transition far ir radiation spectra produced by submillimeter 

electron bunches generated with the Cornell linac and then demonstrate that with the help of a 

previously proposed Kramers-Kronig analysis,[135] the complete bunch shape including the 

longitudinal asymmetry can be determined. For experimental conditions similar to those used for 

injection into the Cornell synchrotron both kinds of coherent spectra give the same largely 

asymmetric bunch shape. 
Our experiments on the bunch length shape were performed at the 2856 MHz S-band linac 

that serves as an injector for the Cornell storage ring. It consists of a pulsed thermoionic triode gun, 

a two-stage subharmonic prebuncher and a total of 8 accelerator structures, capable of producing up 

to 1011 electrons in a single microbunch with an energy of 300 MeV. Coherent synchrotron 

radiation was generated by the passage of the electrons through the field of a 0.44 Tesla bending 

magnet. From the geometry of the vacuum chamber of the magnet we estimate that the synchrotron 

spectrum is unaffected by waveguide effects for frequencies higher than 2 cm"1. For the generation 

of transition radiation the bending magnet is turned off, and coherent radiation is produced by the 

passage of the electron bunch through the gold coated mirror. The radiation passes through a 

crystalline quartz window out of the vacuum chamber and is then collected by an off-axis parabolic 

mirror, and finally reflected off two additional flat mirrors into the spectrometer. 
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To analyze the spectrum of either types of radiation we use a polarizing grid Michelson 

spectrometer that can be remote controlled and is of rugged construction to allow extended periods of 

experiment without further alignment. This type of spectrometer combined with Golay cell detectors 

has the advantage of a fairly flat spectral response in the mm wavelength range. To correct for 

intensity fluctuations during the measurements, the spectrometer is equipped with an identical 

reference detector. The low frequency limit of the spectrometer, determined by diffraction losses and 

the finite aperture of the detectors, is about 2 cm"1, the high frequency limit, determined by the 

grating constant of the polarizing wire beamplitters used in the instrument is about 50 cm4. 

A measured spectrum of coherent synchrotron radiation is shown in Fig20 (a). This 

spectrum has been obtained with single bunch operation at a repetition rate of 15 Hz, and 2xl09 

electrons per bunch. The linac parameters (prebuncher phase and amplitude) are similar to the 

standard settings used for injection into the Cornell synchrotron. Under these conditions, the 

electrons are present in a single bunch, as confirmed experimentally by the lack of a cross correlation 

signal from electrons in adjacent rf cycles of the linac. The spectrum in Fig. 20 (a) shows strong 

interference patterns, an indication of a structured bunch. The intensity grows rapidly with 

decreasing frequency, as expected for coherent radiation, and finally is suppressed below 2 cnr1 due 

to the limited aperture and detector response. Figure 21(a) shows the measured coherent transition 

radiation spectrum under similar linac beam conditions. 

To analyze these two sets of data in detail, the E-field for the coherent part of the emission 

spectrum is written as[136] 

E,oti<D)    = Eeff(co) = S(co) E(co). (16) 
jN(N-l) eft 

so that the effective E-field at the detector is linearly related by S(co) to the E-field produced by an 

individual electron. This spectral function can be expressed as 
lnS(Q)) = lnp(co) + iy/(co), (17) 

where p(co) is the modulus and \|/(co) is the phase factor. It can be shown that 5(co) can be 

analytically continued into the complex frequency plane and that the real and imaginary parts in Eq. 

(17) are related by Kramers-Kronig relations.[135,137] If the form factor, 
F{a>) = S(0)) S*(co) = p2 (ö)), is measured at all frequencies then the frequency dependent phase 

factor \j/((ö) can be obtained through the following integration: 

^.-^pf-^'^W/PWl. (18) 
71      JO X"-C0" 

With \|/(co) known the determination of the frequency dependence of the complex form factor is 

complete. The desired normalized bunch distribution function is [135] 
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S(z) 
1 i*00 

         d(0 p(CO) C0S[\|/(Cü) - ^r]. (19) 
KCJQ 

To extract the bunch form factor from the spectrum in Fig. 20(a) we first correct the spectral 

distribution for the GO
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 frequency dependence of the single electron emittance. Inspection of the 

resulting intensity versus frequency data in Fig. 20(b) indicates that the high frequency asymptote 

can be readily matched to the data. Somewhat more care is required in analyzing the low frequency 

0 5 10        15        20        25 
Frequency(cm') 

0 2 4 6 8 

z(mm) 

Figure 20. Measured coherent synchrotron radiation spectrum and calculated longitudinal bunch shape. The 
experimental beam conditions are similar to those used for injection into the Cornell synchrotron, (a) The intensity 
spectrum in arbitrary units is shown as a function of frequency, (b) The data in (a) are divided by to2'3 then the low 
frequency asymtote is attached to the data between 0 and 1.6 cm"' with F(0) normalized to 1. (c) The calculated 
longitudinal bunch shape versus distance. 

end of each spectrum since the intensity at the detector goes to zero while F(0) must equal one. For 

the spectrum with the low frequency asymptotic attachement shown in Fig. 20(b), the longitudinal 

bunch shape shown in Fig. 20(c) is found. The main contribution is localized in the first 1 mm with 

a satellite feature appearing at 4 mm. 

But how much of the resulting bunch shape is a function of the low frequency attachment? 

As long as the asymptotic attachment occurs at low frequencies then because of the intervening 
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fourier transform, represented by Eq. (19), the uncertainties introduced by the low frequency details 

can only influence the corresponding bunch shape at large distances. The low frequency (and hence 

large distance) uncertainty comes from both the relative height of F(0) with regard to the measured 

spectrum and the frequency of the asymptotic attachment, two parameters. The normalization factor 

of the intensity spectrum can, in principle, be determined from the number of electrons in the bunch 

and the absolute intensity; however, a measurement of the absolute intensity has not yet been 

attempted. As we now show, neither the attachment frequency nor the relative size of F(0) have 

much effect on the bunch shape at small distances, the quantity of interest here. 

Since the single particle emittance spectrum is flat for transition radiation, no frequency 

dependent correction to the data in Fig. 21(a) is required to make contact with the bunch form factor. 

In Figure 21(b) the results for two different relative sizes of F(0) with respect to the intensity versus 

frequency profile (solid and dot-dashed) are shown. Both asymptotes are attached at 1.8 cnr1 and 

the resulting bunch shapes are nearly the same. Of the two parameters, the relative size of F(0) and 

the attachment frequency, the frequency has the largest influence on the bunch shape. Of course, to 

determine the exact bunch shape at large distances would require a more precise measurement at still 

lower frequencies. The important point here is that the main asymmetric peak in S(z) as determined 

from the synchrotron spectum in Fig. 20(c) or by the transition radiation spectrum in Fig 21(c) 

occurs at small distances (~ 1 mm) and is essentially uneffected by the particular asymtotic expansion 

that is used. Very similar shapes S(z) are found using both kinds of radiation for experimental 

conditions similar to those used for injection into the Cornell synchrotron. 

In conclusion, the Kramers-Kronig transform technique applied to the coherent far ir 

spectrum produced by submillimeter charged particle bunches provides a new method for the 

measurement of the complete longitudinal shape. The only uncertainty in the shapes found here 

occurs at large distance because the lowest frequency radiation is beyond the range of the detector 

system, an experimental problem. For shorter bunches like those recently reported[133], this 

complication will vanish since in this case the low frequency form factor asymptote can be attached at 

a much higher frequency where the experimental uncertainties are greatly reduced. 
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Figure 21. Measured coherent transition radiation spectrum and calculated longitudinal bunch shape. The experimental 
linac beam conditions are similar to those used for injection into the Cornell synchrotron, (a) The intensity spectrum 
in arbitrary units as a function of frequency, (b) Two different zero frequency asymtotes between 0 and 1.8 cm"1 (solid 
and dashed) are attached to the low frequency data in (a), (c) The calculated longitudinal bunch shape for both cases 
show that the relative height of F(0) plays only a small role in fixing the exact bunch shape. 
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